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Abstract—We present a novel framework for 3D tomographic reconstruction and visualization of tomograms from noisy electron
microscopy tilt-series. Our technique takes as an input aligned tilt-series from cryogenic electron microscopy and creates denoised 3D
tomograms using a proximal jointly-optimized approach that iteratively performs reconstruction and denoising, relieving the users of the
need to select appropriate denoising algorithms in the pre-reconstruction or post-reconstruction steps. The whole process is
accelerated by exploiting parallelism on modern GPUs, and the results can be visualized immediately after the reconstruction using
volume rendering tools incorporated in the framework. We show that our technique can be used with multiple combinations of
reconstruction algorithms and regularizers, thanks to the flexibility provided by proximal algorithms. Additionally, the reconstruction
framework is open-source and can be easily extended with additional reconstruction and denoising methods. Furthermore, our
approach enables visualization of reconstruction error throughout the iterative process within the reconstructed tomogram and on
projection planes of the input tilt-series. We evaluate our approach in comparison with state-of-the-art approaches and additionally
show how our error visualization can be used for reconstruction evaluation.

Index Terms—tomographic reconstruction, electron tomography, tilt-series, visualization, cryo-ET, GPU acceleration

✦

1 INTRODUCTION

TOMOGRAPHIC reconstruction is a process of transform-
ing a series of tilted projection images (tilt-series) into

a 3D volumetric representation (tomogram), where the in-
formation is stored in voxels organized in a regular grid.
The problem was first addressed in the mathematical field
by Johann Radon over a century ago. It was later put into
practice in the 1930s as focal plane tomography using X-
ray imaging in medicine, and many other modalities such
as magnetic resonance imaging (MRI) [1], positron emission
tomography [2], [3], functional MRI [4] and others within
the medical domain and broader. The modalities mentioned
above usually produce a series of uniformly distributed
projections with small amounts of noise thanks to the
characteristics of the imaging techniques and the objects
under reconstruction. However, this is not true for specific
domains where limitations are imposed in the imaging
technique to avoid destroying the sample, as it is the case for
high-energy electron microscopy (EM) techniques applied
to fragile biological samples. For instance, cryo-electron to-
mography (cryo-ET) is capable of revealing the viral and cel-
lular structures at molecular, or even atomic details [5], [6].
To avoid damaging the sample during the image acquisition
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in these techniques, the energy of the electron beam and the
number of projections is limited. Due to these limitations,
projection images created in electron microscopy have a low
signal-to-noise ratio, a limited number of projections, and a
limited maximum tilt angle.

The tomographic reconstruction problem is addressed
using a variety of algorithms, such as Fourier-domain recon-
struction [7], back-projection reconstruction [8], fan-beam
reconstruction [9], algebraic reconstruction techniques [10],
[11], [12], and recently deep learning [13], [14]. While the
first three approaches usually work well when we have a
large number of projections with relatively low noise levels,
they produce poor results when there is a limited number
of projections or under high levels of noise, as is the case
for electron microscopy. Algebraic reconstruction techniques
provide better results under these conditions, but they re-
quire several iterations making them computationally more
expensive.

There have been distinct approaches to improve the
reconstruction quality for limited angle projection data,
including deep-learning-based reconstruction methods [13]
or traditional reconstruction techniques (e.g. back-projection
reconstruction) coupled with a deep learning denoising
approach. Here, denoising is applied either on the tilt-
series before the reconstruction [15], [16], [17], or after the
reconstruction on tomograms created with traditional tech-
niques [18], [19]. One difficulty with such complex image
processing pipelines is that the final reconstructions cannot
easily be traced back to the individual raw input data to
obtain an estimate of the reconstruction error or uncertainty.
This makes it difficult to assess how reliable and trustworthy
the reconstructions are, given that cryo-ET operates close
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to the physical limits and there are usually no alternative
imaging methods to validate the results.

In this paper, we present a GPU accelerated iterative
tomographic reconstruction approach that integrates de-
noising in the reconstruction process by alternating between
minimizing the re-projection error with algebraic recon-
struction techniques and decreasing the noise using various
regularization and denoising methods. The reconstructed
tomograms are much cleaner than one could obtain using
the existing approaches, removing the need to denoise
the tilt-series prior to the reconstruction or denoise the
reconstructed volumes. More importantly, the achieved re-
constructions are denoised and, at the same time, directly
tied to the original projection data in a way that enables
a direct consistency check between the reconstruction and
the raw input projection images. Once reconstructed, the
tomograms can be visualized in 3D with volume rendering
tools included in the framework. Moreover, we can visualize
the error distribution and magnitude during the reconstruc-
tion process on individual projection planes or within the
reconstructed tomogram.

To summarize, the main contributions of this paper are:

• a novel GPU accelerated technique for cryogenic
electron tomography which iteratively reconstructs
and denoises the tomograms, achieving excellent
denoising results and sharp details in a matter of
minutes;

• our approach is based on a flexible and robust
optimization framework that integrates reconstruc-
tion and denoising, removing the necessity of pre-
reconstruction or post-reconstruction denoising and
maintaining the relationship between the original
tilt-series and the reconstructed tomogram;

• a method for visualizing the reconstruction error
throughout the reconstruction, either on individual
projections or within the reconstructed volume.

In Section 2 we present how our approach relates to the
existing research. In Section 3 we present our method and
implementation details followed by the results and evalua-
tion in Section 4. In Section 5 we present the conclusions and
possible future extensions and adaptations of the presented
method.

2 RELATED WORK

There are two well-known families of techniques for to-
mographic reconstruction. The first, direct methods, encom-
passes methods that exploit the Fourier slice theorem [20].
An overview of these methods can be found in a book
by Hsieh [21]. The second, iterative methods, is a family of
iterative algorithms that aim to solve tomographic recon-
struction as a system of linear equations.

One of the first techniques from the direct methods
is Weighted Back-projection (WBP) [22], with later adap-
tations [23], [24], where the reconstruction includes two
main steps. First, the projections are filtered (typically in
the Fourier domain) to avoid over-smoothed reconstruc-
tions due to the imbalance in the available low and high-
frequency information. Second, the filtered projections are

back-projected into the reconstruction using the adjoint op-
erator of the Radon transform [21].

The iterative reconstruction methods begin with the
Algebraic Reconstruction Technique (ART) presented by
Gordon et al. [10] and later adaptations the Simultaneous
Iterative Reconstruction Technique (SIRT) [11] and Simulta-
neous Algebraic Reconstruction Technique (SART) [12]. In
ART methods, the object is reconstructed into a discrete
grid by iteratively projecting the current volume estimate,
creating corrections based on the difference between the
original projections and re-projections of the current volume
estimate, and then back-projecting the corrections into the
volume.

It has been shown that iterative methods outperform the
FBP methods in the case of limited projections [25]. More-
over, the noise is handled better by algebraic methods [8].
These are also the reasons we implement our method as an
iterative method which improves the reconstruction results
by minimizing the error term. For an overview of more
3D reconstruction methods for multiple EM modalities, see
work by Sorzano et al. [26].

As Pyle and Zanetti [27] already show, there are many
software packages and toolboxes available for tomographic
reconstruction such as IMOD [28], Air II - a Matlab tool-
box [29], ASTRA Toolbox [30], [31] and its Python wrapper
TomoPy [32], and AuTom [33] which are integrated in many
microscopy pipelines. IMOD implements the FBP and SIRT
approaches, Air II, and AuTom implement ART approaches,
and ASTRA Toolbox offers FBP, SIRT, SART, and other
reconstruction approaches. Most of these packages offer
CPU as well as GPU implementations. Our approach solves
tomographic reconstruction as an optimization problem,
using SART or SIRT together with various regularizers to
integrate denoising in the reconstruction process, and it is
implemented for execution on GPUs.

In the specific case of cryo-ET on biological structures,
the measured projections are very noisy. The reason for this
is the destructive nature of the image acquisition process,
where the specimen gets destroyed if exposed to the electron
beam with higher energy. To avoid the sample damage due
to the electron radiation, the image acquisition is performed
using lower electron doses, resulting in a lower signal-to-
noise ratio in the output tilt-series. A good overview of the
current cryo-ET reconstruction approaches is presented by
Donati [34] and the current strategies on data processing
for cryo-ET as well as for subtomogram averaging are pre-
sented by Pyle and Zanetti [27]. The authors give a partial
but extensive list of software tools used in individual steps
of the cryo-ET pipeline before and after the tomographic
reconstruction and identify their functionalities.

Additionally, due to the tilt limitation in cryo-ET, there
is the missing wedge problem due to the lack of projections at
high tilt-angle views [35]. While the effect of the missing
information can be minimized already during the recon-
struction step, this problem is usually addressed separately,
since adding the missing information into the data is not
part of reconstruction when not considering a single particle
approach where the same particle is present in many parts
of the sample. This is true for works presented by Trampert
et al. [36], Yan et al. [37], and Ding et al. [38].

In order to handle angle-limited projection data, Würfl
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et al. [13] proposed a deep-learning-based reconstruction
method for limited angle tomography. Another common
attempt is to couple a reconstruction technique, e.g., back-
projection reconstruction, with a deep learning denoising
approach. Here, denoising is applied either on the tilt-series
before reconstruction [15], [16], [17], or after the reconstruc-
tion on tomograms created with traditional techniques [18],
[19]. Alternatively, reconstruction methods including regu-
larization terms have been proposed to handle this ill-posed
problem, but only for 2D synthetic limited angle data [39],
[40]. An example of the current reconstruction pipeline for
obtaining state-of-the-art results in cryo-electron tomogra-
phy (cryo-ET) is presented by Yao et al. [41]. It consists of
downsampling the reconstructed tomograms using a bin-
ning approach and then applying subtomogram averaging
to manually selected subtomograms. The tomograms are
reconstructed using IMOD’s weighted back-projection [28],
and then binned 4× for further processing. Hundreds of
tomograms are reconstructed and binned, and thousands
of subtomograms are manually selected to apply subtomo-
gram averaging.

Due to the low signal-to-noise ratio in cryo-ET tilt-
series and the reconstructed tomograms, there is a need
to denoise the data either before or after the tomographic
reconstruction or even at both times. A recent overview
on using the denoising in the cryo-ET reconstruction by
Frangakis [42] presents what kind of methods are typically
used prior or after the tomographic reconstruction ranging
from simple linear, non-linear, bilateral, and trilateral filters
in the spatial domain, filters in Fourier and Wavelet domains
and denoising approaches using neural networks [16], [18].
The denoising using neural networks requires further stud-
ies to be well understood. There are still some concerns
on whether such methods used in the pre-reconstruction
step can introduce additional artifacts and/or biases. In our
approach, we use a well-understood approach to denoising
during the reconstruction step, which to the best of our
knowledge does not introduce any biases into the data.

Multiple model-based iterative reconstructions ap-
proaches have been proposed for cryo-ET. Goris et al. [43]
present a regularized algorithm that combines SIRT with
Total Variation (TV), [44] for cryo-ET of nano-structured
materials. These samples are not as susceptible as biological
samples which allows using higher electron doses, obtaining
projections in a higher angular range (−70◦ to 78◦) and a
higher number of projections (each 2◦, 75 projections) with
significantly less noise. Böhning et al. [45] present a cryo-
ET reconstruction method based on compressed sensing.
They propose using 3D second-order TV for tomographic
reconstruction, casting the reconstruction problem as a reg-
ularized optimization problem, solved using a primal-dual
hybrid gradient method implemented in python using AS-
TRA Toolbox [30], [31] for the data term. The virus particles
in the tilt-series are separated and centered on the tilt axis for
individual reconstruction. The reconstructed individual par-
ticles are then cropped and used for sub-tomogram averag-
ing. The pipeline requires manual intervention between the
steps, and relies on several software tools for the different
steps. Yan et al. [37] applied the Model-Based Iterative Re-
construction (MBIR) [46] algorithm for cryo-ET reconstruc-
tion. The MBIR framework uses a probabilistic model for the

measurements (data term) and a probabilistic model for the
object (regularization). Our framework is based on proximal
algorithms [47], which allows for seamless combination of
different data term solvers and denoisers. We experimented
with SART and SIRT for the data term, and TV, Huber
loss [48] and Non-Local means (NLM) [49] for regular-
ization. Parting from aligned tilt-series, our framework is
a self-contained software that allows 3D visualization of
tomograms created through integrated reconstruction and
denoising.

It is expected that the reconstruction processes are not
perfect, which is especially true when done with insufficient
input data in the first place. Uncertainty visualization is
a central topic in visualization both for 2D as well as
in 3D data as is reflected by multiple surveys [50], [51],
[52], [53], [54]. There are only a few methods that address
uncertainty in volume visualization, and it is not common
for the current cryo-ET reconstruction pipelines to provide
this uncertainty to the user, which is an option in our case.
We provide an error tilt-series, which includes a re-projection
error image for each original projection image. The error tilt-
series is reconstructed into an error volume that shows the
uncertainty in the reconstructed volume. The work by Kniss
et al. [55] allows users to explore the uncertainty of surface
boundaries in volumetric data interactively. Lundström et
al. [56] presents how probabilistic animation can be used
for uncertainty visualization in medical volume rendering,
which was later also applied to concurrent visualization
of real-time fMRI data presented by Nguyen et al. [57].
Lindholm et al. [58] propose the use of spatially conditioned
transfer functions using local material distributions, which
can also be applied to uncertainty visualization. This results
in using separate transfer functions for individual modality,
e.g., one being the volume of reconstructed values and the
other volume of uncertainty values, and blending them
in the rendering process. We experimented blending the
error volume and the reconstructed volume in the rendering
process, but found that visualizing the error and the recon-
struction individually allowed for an easier interpretation of
the error. Dinesha et al. [59] explore an option of using HDR
volumetric rendering where regular transfer function is
used for mapping the intensity values into HDR color space,
and the luminance component of the color is exploited for
capturing uncertainty.

3 METHOD

We propose a reconstruction framework that creates de-
noised 3D tomograms from previously aligned noisy 2D tilt-
series and allows direct visualization of the reconstructed
tomograms. We present tomographic reconstruction as a
regularized optimization problem, which is solved using
a proximal joint-optimization technique that integrates de-
noising and reconstruction, and we describe the proximal
operators that are required in the framework. A diagram of
our method’s pipeline is depicted in Figure 1.

3.1 Tomography as an optimization problem

The projection images coming from cryogenic electron to-
mography represent the transmission images of parallel rays
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Fig. 1. Pipeline of our framework. The input is aligned tilt-series, which
are used to create denoised tomograms by alternating between re-
construction and denoising instead of denoising the tilt-series or the
resulting tomogram. The re-projection error and a corresponding error
volume can be generated optionally.

passing through a sample. The image formation model is
derived from the Beer-Lambert Law [60]. The measured
intensity for a particular pixel pi is

Î(pi) = Î0(pi) · exp
(
−
∫

σ(rpi
(t)) dt

)
, (1)

where rpi
(t) is a ray associated with the pixel pi, σ is the

attenuation cross-section, commonly known as density and
Î0(pi) is the intensity of the electron beam. The goal is to
reconstruct a discrete volume σ(x, y, z) from the available
ray integrals, usually in log space as

I(pi) = − log

(
Î(pi)

Î0(pi)

)
=

∫
σ(rpi

(t))dt. (2)

In log space, the relationship between the projections and
the 3D volume becomes linear and is simply the line integral
of the volume densities σ(x, y, z) along the ray rpi

(t). With
this, the discretized image formation model can be repre-
sented by a weight matrix W that contains the contribution
of each volume element for each ray integral as in algebraic
reconstruction techniques, where tomographic reconstruc-
tion is presented as a linear algebra problem Wv = p,
where v ∈ RN is the unknown volume that we want to
reconstruct, p ∈ RM is the set of known ray integrals (tilt-
series), and the weight matrix W ∈ RM×N represents the
contribution of each voxel to each ray integral. We formulate
tomographic reconstruction as the following optimization
problem:

arg min
v

1

2
∥Wv − p∥22︸ ︷︷ ︸
data fidelity

+ Γ(v)︸ ︷︷ ︸
regularization

. (3)

The first term in Equation 3 is a data fitting term that
measures how good of a fit the current volume estimate is to
the original projection data. The second term in Equation 3
is a non-linear regularization term that constrains the space
of acceptable solutions, which is required to deal with the
noisy and angle-limited tilt-series from cryogenic electron
tomography. To apply known non-linear solvers, we rewrite
the data term as F (v) = 1

2 ∥Wv − p∥22 and the regular-
ization term as G(Kv) = Γ(v), where G is a non-linear
function and K is a matrix. Then, we rewrite Equation 3 as
the following constrained optimization problem:

arg min
v,z

F (v) +G(z), subject to Kv = z. (4)

3.2 Proximal Framework for Cryo-ET
Equation 4 is a standard problem in numerical optimization,
and there are many non-linear solvers with guaranteed
convergence when F and G are convex. There is a fam-
ily of such solvers called proximal algorithms, which are
powerful and flexible optimization algorithms that can be
used to solve non-smooth, constrained, distributed or large-
scale optimization problems. Proximal algorithms have a
modular nature, since the optimization problems are split
into smaller sub-problems called proximal operators, and each
sub-problem can be solved independently. In our case, we
require proximal operators for F and G. Let H(·) be a
function that we want to minimize (i.e. either F or G).
The proximal operator of H(·) can be interpreted as getting
closer to the minimum of H(·) while staying close to a
reference point u, and is defined as [47]:

proxλH(u) = arg min
v

H(v) +
1

2λ
∥v − u∥22 , (5)

where v, u ∈ Rn and λ ∈ R is a regularization parameter
for controlling the relevance of the proximity term ∥v − u∥22.
The proximal operators of many functions are easy to com-
pute and have a closed form solution. Having the proximal
operator for a given set of functions creates the possibility
of solving complex optimization problems using proximal
algorithms that combine these proximal operators, in our
case, the proximal operators of F and G.

3.2.1 Linearized Alternating Direction Method of Multipliers
The Linearized Alternating Direction Method of Multipliers
(LADMM) [47] (Algorithm 1) is a proximal algorithm that
can be used to solve optimization problems of the form in
Equation 4.

Algorithm 1 Linearized ADMM

Require: K ∈ Rd×N , ρ, µ ∈ R such that µ
ρ ||K||2 ≤ 1,

initial values v(0) ∈ RN and z(0) ∈ Rd

Initialize y(0) = 0d

for t = 1...T1 do
v(t+1) = proxµF (v

(t) − µ
ρK

T (Kv(t) − z(t) + y(t)))

z(t+1) = proxρG(Kv(t+1) + y(t))

y(t+1) = y(t) +Kv(t+1) − z(t+1)

end for
return v(T1)

In Algorithm 1, K is a matrix related to the regulariza-
tion term, ρ, µ arise when manipulating ADMM to solve
problems of the form arg minv F (v) + G(Kv) (see [47]
section 4.4.2), z and y are additional variables. T1 is the
number of iterations of the proximal algorithm.

3.3 Proximal operators
To apply Algorithm 1, we need the proximal operators for
our data fidelity term and regularization terms.

3.3.1 Data term proximal operator
We want a proximal operator to solve the data fidelity term
in Equation 3. By definition:

proxµF (u) = arg min
v

1

2
∥Wv − p∥22 +

1

2µ
∥v − u∥22 (6)
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That is, given a current volume u, find a new volume v close
to the current estimate u that minimizes 1

2 ∥Wv − p∥22. This
is simply a least-squares problem, whose analytical solution
is [47]:

(µW TW + I)−1(µW Tp+ u). (7)

Any linear solver can be used to solve Equation 7. In
our implementation, we use SART [12], which is a proven
algorithm for tomographic reconstruction with a known
proximal operator [61]. With SART, we can represent the
projection matrix W and its transpose in a procedural way,
avoiding the explicit generation of the system matrix, which
would otherwise incur an infeasible memory cost. Note that
even if W is not full rank, the inverse in the proximal
operator is well-conditioned thanks to the addition of I . The
proximal operator for SART corresponds to Algorithm 2,
where T2 is the total number of SART iterations when
calling the proximal operator (independent from T1), α is
the relaxation coefficient, µ is the regularization parameter
of the proximal operator, p is the original projection data
and u is an initial estimate of the reconstruction.

Algorithm 2 SART proximal operator

Require: W ∈ RM×N , α, µ ∈ R, p ∈ RM , u ∈ RN

Initialize:
v(0) = u
y(0) = 0

for t = 1...T2 do
for all projection images Pθ do

y
(t+1)
j = y

(t)
j + α

∑
i∈Pθ

√
2µpi−

√
2µ

∑
k wikv

(t)
k −y

(t)
i

1+
√
2µ

∑
k wik

v
(t+1)
j = v

(t)
j + α

∑
i∈Pθ

√
2µpi−

√
2µ

∑
k wikv

(t)
k

−y
(t)
i

1+
√

2µ
∑

k wik

√
2µwij

√
2µ

∑
i∈Pθ

wij

v(t+1) = max (0,v(t+1))
end for

end for
return v(T2)

3.3.2 Regularization operators

Anisotropic Total Variation Proximal Operator: This reg-
ularizer was proposed by Rudin, Osher, and Fatemi and is
known as the ROF model [44]. It was conceived under the
idea that images with excessive (and probably noisy) details
have high total variation (the integral of the absolute image
gradient is high). In other words, images are assumed to be
sparse in the gradient domain. Anisotropic Total Variation
(ATV) is defined as the ℓ1 norm of the image gradient. In our
framework, we define GATV (·) = ∥·∥1 and K ∈ R3N×N

as the forward difference matrix that produces the discrete
volume gradient. Since the proximal operator of the ℓ1 norm
is the soft thresholding function [47], the proximal operator
of GATV is the soft thresholding function applied to each
element of the volume gradient.

proxρ1GATV
(uni) = sign(uni)×max(0, |uni | − ρ1), (8)

where uni
is the ith component of the volume gradient u =

Kv at voxel n and ρ1 is a regularization parameter that
controls how fast the volume gradient shrinks.

Huber Penalty Proximal Operator: This regularizer was
proposed by Peter J. Huber [48]. The Huber penalty can be
applied on the volume gradient to reduce the total variation,
avoiding the sparse gradients produced by the ℓ1 norm. It
is defined as a piecewise function composed of ℓ2 and an ℓ1
segments:

GHuber =

{
1
2x

2, |x| ≤ δ,
δ(|x| − 1

2δ), |x| > δ.
(9)

The proximal operator is again a soft-thresholding oper-
ation applied to each element of the volume gradient:

proxρ2GHuber
(uni) =


1

1+ρ2
uni , |uni | ≤ δ + δρ2,

uni
+ ρ2δ, uni

< −(δ + δρ2),
uni

− ρ2δ, uni
> δ + δρ2,

(10)
where ρ2 controls how fast the gradient shrinks and

δ controls the transition point between the linear and
quadratic segments in GHuber.

Non-local means as a proximal operator: Any Gaussian
denoiser (e.g., Non-Local Means [49]) can be interpreted as
a proximal operator with a fixed regularization parameter
as the assumed variance of the noise, as shown in the
works by Venkatakrishnan et al. [62] and Heide et al. [63].
We will use the Non-Local Means algorithm as a proximal
operator in our framework since its operation principle
resembles subtomogram averaging, and it is a common
denoiser in cryo-ET pipelines (e.g., Thermo Fisher’s Amira
Software [64]). For each pixel in an image, Non-Local Means
performs denoising by searching pixels with neighborhoods
(square-shaped patches centered at the pixel) similar to that
of the pixel under denoising in a square-shaped search zone
centered at the pixel. The denoised value is computed as
a weighted average of the pixel values in the search zone.
The weight of each pixel in the search zone is proportional
to the distance to the center pixel and the similarity of the
neighborhoods of each pixel and the center pixel.

Assuming some prior distribution G(v), the Non-Local
Means algorithm [49] can be used directly in the framework
as a proximal operator (with K = I):

vMAP = proxσ2
nlmG̃(b), (11)

where G̃(v) = − log(G(v)). The regularization parameter is
the assumed variance of the noise σ2

nlm. For details, see the
supplementary material.

Using the regularization proximal operators: In our
implementation, we use TV and Huber penalty interchange-
ably in combination with NLM. First, we use Algorithm 1
with TV or Huber by performing the z update with Equa-
tion 8 or Equation 10 for several iterations (typically 50−80).
Then, we incorporate NLM to reduce the noise in the recon-
structed volume v, using TV+NLM or Huber+NLM for a
few iterations. We found that two final iterations with NLM
improve the results by further reducing the noise levels
without blurring the details in the reconstructed structures.

3.4 Implementation Details

Figure 2 includes a 2D diagram of the reconstruction scene.
We can think of this diagram as the reconstruction of a single
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Fig. 2. Top view of the reconstruction scene. Horizontal padding is
required for the extreme views.

horizontal slice. The volume (green rectangle) is centered
at the origin. The rays travel from the source (red line) to
the detector (not in the diagram) which is parallel to the
ray source, located on the other side of the volume. In
the domain of cryo-ET, the rays present parallel geometry
and calculations can be easily parallelized. Our framework
includes two implementations for the SART and SIRT prox-
imal operators. The first is based on ray casting [65], and the
second is based on voxel splatting [66]. In the voxel splatting
implementation, the weights are read from pre-integrated
lookup tables that are computed by line integrals of rays
traversing radially symmetric filter kernels [67] at different
distances. A 2D example of the ray-kernel interaction is
shown in Figure 3.

3.4.1 Ray Casting Implementation of SART/SIRT
Forward Projection and Correction Term: From each pixel
pi in the ray source, a ray is cast across the volume towards
the corresponding pixel in the detector. Samples are taken
at equidistant points along the ray. At each sample point,
a volume value is retrieved by tri-linear interpolation. The
correction term is computed immediately after calculating
the line integral as

I(pi)− sample_rate×
∑S

s=1 v
k
s

ray_length
, (12)

where I(pi) is the measured line integral value of the
current ray in the log space, S corresponds to the number of
samples, sample_rate is the distance between samples (in
voxels), vks is the current volume estimate at sample point
s, and ray_length is the length in voxels of the ray-volume
intersection.

Back-projection: For each voxel, we cast a ray parallel
to the current view pointing to the detector. We compute
the point at which the ray intersects the detector, and
retrieve a correction value with bi-linear interpolation of the
correction image. The voxel is updated with the interpolated
correction value, times the relaxation factor. In this way, the
forward projection and backward projection are not exact

Voxel Kernel

Ray Ray-kernel
intersection

Fig. 3. 2D representation of ray-voxel interactions.

transposes of each other, but we avoid data races in both
operations, and the result is practically the same as with
the splat-based implementation, where the operators are
transpose of each other.

3.4.2 Voxel Splatting Implementation of SART/SIRT

Forward Projection: Each voxel is splatted into the detector
and updates all the pixels of a ray-sum image that are
inside the splatted voxel’s kernel support. A weights image is
created accordingly. Data races can occur if two voxels try to
update the same pixels at once, either in the ray-sum image
or the weights image.

Correction Image: For each pixel in the correction
image, the correction term is computed as

α× I(pi)− ray_sum_image[i]

weights_image[i]
(13)

where α is the relaxation parameter, I(pi) is the mea-
sured line integral in the log space, ray_sum_image[i] is
the value of the pixel i of the computed projection, and
weights_image[i] is the sum of the weights for the pixel
i.

Back-projection: For each voxel, we splat the voxel in
the detector and retrieve a correction value by interpolation
using the pre-computed weights. The forward projection
and back-projection operators are transposes of each other.
If we use linear interpolation, the result is practically the
same as with the ray-based implementation. There are no
data races in the back-projection operation.

3.4.3 CUDA implementation:

Our framework is implemented in CUDA. The most impor-
tant kernels are described below.

• Ray-casting Forward Projection: Launches a thread
for each pixel in the projected image and each thread
computes a line integral and a correction term. It
produces a correction image that is used in the back-
projection.

• Ray-casting Back-projection: Launches a thread for
each voxel. The corresponding voxel value is up-
dated based on a correction term which is retrieved
from the correction image.

• Splatting Forward Projection: Uses one thread per
voxel. A synthetic projection and corresponding
weights image are computed as described in Sec-
tion 3.4.2.
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Fig. 4. Comparison between 2D XY NLM (left) and XZ NLM (right) using
dataset 1. XZ NLM produces horizontal line-shaped artifacts.

• Splatting Correction Image: Using one thread per
pixel, computes a correction image based on the pre-
viously computed synthetic projection, weight image
and original projection.

• TV Proximal Operator: Executes one thread per
voxel. Each thread updates the corresponding three
components of the variable z.

• NLM Proximal Operator: Executes one thread per
voxel. Each thread updates the corresponding voxel
value based on similar patches in the surrounding
neighborhood.

3.4.4 Horizontal Padding for Limited Angle Reconstructions
If the reconstructed volume has the same width as the
projection images, the rays in the borders of the projection
image are going to have a shorter intersection with the re-
construction volume as the tilt angle is increased. As seen in
Figure 2, rays at tilt angle zero intersect the volume exactly
at the boundaries, and all the rays intersect the volume
for the same distance. Rays from views with maximum
tilt angle ϕ will traverse the volume for different distances.
Horizontal padding is required so that the distance that the
rays travel inside the volume is the same for each view. For
this, the required volume width vw including padding is

|pw · sin(θ) + (pw · cos(θ)− vd) · cot(θ)|+ 2 · vd
tan(θ)

(14)

Where pw is the width of the projection images, θ =
90 − ϕ, vd is the volume depth. The obtained value should
be rounded up to the next even value. For example, for
projection width = 1024, the padded volume width is 2568.
Further details are included in the supplementary material.

3.5 3D Visualization of the Reconstructions

We use a simple adaptation of the regular Direct volume
rendering ray marching approach [68] for visualizing the
reconstructed tomograms. The rendering pipeline also in-
cludes soft shadows [69] and local ambient occlusion [70].
The visualizations include intermediate results (SART+TV)
and final results (SART+TV+NLM).

3.6 Visualization of the Error

The re-projection error of the reconstruction can be option-
ally generated. An ‘error tilt-series’ is created as follows: For

Fig. 5. Comparison between Huber+NLM vs. TV+NLM, dataset 1

each viewing angle included in the input tilt-series, we com-
pute a synthetic projection with the estimated volume, and
then a ‘re-projection error image’ is created as the absolute
value of the difference between the original and estimated
projections. The error contribution in the individual error
projections from the tilt-series is spread sparsely throughout
the whole projections resulting in a very noisy error image.
Using the error tilt-series, an ‘error volume’ is created by
applying SART to the error tilt-series. Finally, to enhance
the biggest error contributions for visualization purposes,
we apply the following steps:

1) we first apply 3× 3 Gaussian blur;
2) next we threshold the intensity values below 1

8 -th of
the max value;

3) finally we adjust the gamma value of the image to
2.0 to shift the mid-tones to brighter values.

This approach pronounces the regions in the error projection
images with the highest error values and also pronounces
structural features.

4 EVALUATION AND RESULTS

4.1 Datasets description

For the experimental results included in the paper, we used
4 different datasets:

1) SARS-CoV-2 specimen 1

Fig. 6. Effect of masking the fiducials on a tilt-axis (XZ) slice on dataset
1.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3230445

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??, JUNE 2022 8

Fig. 7. Reconstructions from a SARS-CoV-2 tilt-series (dataset 1) using our framework with different settings. Without using regularization (first
from the left), the reconstruction fits the noise in the projection data. By alternating between reconstruction (SART) and denoising (TV), the features
are reconstructed and the noise is removed with the pass of iterations (second 2x20 iterations, third 2x80 iterations). Including NLM in the last two
iterations further reduces the noise, preserving the reconstructed features.

Fig. 8. Reconstruction progress from SARS-CoV-2 tilt-series (dataset 2) using our framework. The noise is reduced with the pass of iterations. The
final iterations using NLM+TV reveal the virus particles in the reconstructed volume 3D visualization.

2) SARS-CoV-2 specimen 2
3) Influenza specimen
4) HIV-1 specimen (EMPIAR-10643 [71], [72])

The spatial information available in each dataset corre-
sponds to Table 1.

4.2 Parameter settings
We denote the number of iterations as T2 × T1, where T1 is
the number of iterations of the proximal algorithm, and T2 is
the number of SART iterations per iteration of the proximal
algorithm. The last two iterations use TV+NLM, the rest use
only TV. Unless otherwise specified, the parameters in our
method are: α = 0.2, ρ1 = 0.01, ∥K∥ = 11.99, µ = 0.99ρ

∥K∥ ,
nlms = 21, nlmw = 7, nlmskip = 3, σnlm = 4× 10−8. A fi-
nal iteration of the data term proximal operator is performed

to enforce consistency between the original projections and
the reconstructed volume.
There is no set of optimal parameters for every dataset.
A parameter search is necessary for every data source
(different specimens, different acquisition devices, etc.), but
we found that the set of optimal parameters is mostly
unchanged for different datasets from the same source
(e.g., datasets 1 and 2) and only individual parameters need
to be adjusted. For example, the total number of iterations
T2 × T1 provides control over the ratio of data fidelity (T2)
and regularization (T1), α controls the rate of convergence
during SART iterations, ρ1 controls the amount of TV reg-
ularization on a proximal iteration, the NLM parameters
nlms, nlmw, nlmskip can be adjusted according to the size
of the virions present in each dataset and σ2

nlm to control the
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Fig. 9. Dataset 1 reconstructions. Left: Ours, 2×80 iterations of LADMM
(SART+TV+NLM). Right: MBIR, 600 iterations.

regularization strength.

4.3 Computation hardware and time
A Volta V100 (32 GB) GPU was used for the reconstructions,
which took about 30 minutes for the SARS-CoV-2 datasets
and 1 hour for the HIV-1 dataset.

4.4 Experiments with Non-Local Means
We experimented with 3D and 2D NLM. The search region
and the neighborhoods have a finite extent, are square-
shaped in 2D and cube-shaped in 3D. The side of the search
zone is controlled with nlms parameter, and is 2×nlms+1
(always odd). The side of the neighborhoods is controlled
similarly, with parameter nlmw. The size of the neighbor-
hoods should be set accordingly to the size of sub-structures
in the tomograms. We noticed that the reconstructions ob-
tained with 3D and 2D NLM were very similar, and since
the computational cost of the 2D version is much lower,
we selected it for the rest of the experiments. However,
we still found the 2D version computationally expensive,
and we experimented with skipping some of the pixels in
the search zone. The parameter nlmskip controls the pixel
skipping. There are nlmskip ignored pixels between every
two considered pixels on each axis of the search region.
For the 2D versions, we found that the quality of the
result was not affected significantly for nlmskip ≤ 3, and
the computational cost was greatly reduced. Care should
be taken to include the pixel in the center of the patch
when skipping pixels since it is the one with the higher
weight/contribution. We analyzed two different versions of
2D NLM:

• XY NLM: Applying 2D NLM on each XY slice of the
volume

Dataset Cell size[Å3]
Projection

size
[pixels2]

Pixel
size
[Å2]

1, 2 31334.4×22260.48×1.36 1024×1440
(bin-4) 5.442

3 9794.4×10132.32×1.32 960×928
(bin-4) 5.282

4 —– 1366×1366
(bin-3) 3.542

TABLE 1
Datasets spatial information

• XZ NLM: Applying 2D NLM on each XZ slice com-
paring neighborhoods on XY slices, with the idea of
balancing the resolution between XY and XZ (tilt-
axis) slices.

However, the XY slices produced by XZ NLM presented
horizontal line-shaped artifacts, and there was not a no-
ticeable improvement in the image quality on the XZ slices
(Figure 4). Therefore, we selected 2D XY NLM as the de-
fault NLM operator for the framework. We experimented
with applying NLM in the last, in the last two, and in
the last three iterations only. We found that two iterations
are enough to achieve good denoising, with nlms = 21,
nlmw = 7, nlmskip = 3, and more iterations tend to blur
the details.

4.5 TV vs. Huber penalty

A comparison between TV+NLM and Huber+NLM is pre-
sented in Figure 5. The sparse gradients enforced by TV
achieve a cleaner, more homogeneous background. Huber
achieves a slightly noisier reconstruction, but sharper details
in the reconstructed virus particles. We refer the reader to
the supplementary material for additional comparisons be-
tween TV+NLM and Huber+TV. The results in the following
sections were obtained using TV+NLM.

4.6 Masking the fiducials

In order to minimize the artifacts coming from the fiducial
markers, we created masks corresponding to the fiducial
markers for each projection imaged for the two SARS-CoV-2
datasets. The masks were used to avoid back-projecting the
pixels corresponding to the fiducials during the execution
of Algorithm 2. An example of the artifacts removed by
masking the fiducials on dataset 1 can be seen in Figure 6,
which is an XZ slice. Additional images can be found in the
supplementary material.

4.7 Ablation study

To show the contribution of the different regularizers in our
framework, we created reconstructions of dataset 1 with
different configurations. The results are shown in Figure 7.
From left to right, first we have 2×80 iterations of proximal
iteration (Section 4.1 of [47]) using the SART proximal oper-
ator (Algorithm 2). The second and third images correspond
to LADMM (Algorithm 1) using SART+TV (Algorithm 2,
Equation 8), after 2×20 and 2×80 iterations respectively. The
rightmost image corresponds to 2×80 iterations of LADMM
with Total Variation, using Non-Local Means instead of
Total Variation in the last two iterations, plus a single final
execution of the data term operator in the end. Without
regularization, the reconstructions fit the noise in the pro-
jection data, leading to noisy reconstructions where it is
hard to distinguish between virus particles and background.
Regularization allows creating cleaner reconstructions by
alternating between reconstruction and denoising, greatly
reducing the noise and reconstructing rich details with the
pass of iterations. Finally, Non-Local Means further reduces
the noise in the empty regions while preserving the features
of the virus particles.
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Fig. 10. Dataset 1 reconstructions. Left: Using Topaz Denoise to denoise
the tilt-series and reconstructing it using SART. Right: Ours on the
aligned noisy tilt-series, 2×80 iterations of LADMM (SART+TV+NLM)

Fig. 11. Dataset 3 reconstructions. From left to right: IMOD, Our ap-
proach using TV (above) and TV+NLM (below), and IsoNet with bin-4
(above) and bin-8 (below).

4.8 Progress over time

We can see how the reconstruction progresses over time in
Figure 8, which was created from a tilt-series of another
SARS-CoV-2 specimen (dataset 2) with 3×55 iterations of
LADMM. With the advance of the iterations, the features
of the virus particles are gradually reconstructed and at the
same time, the noise is diminished steadily. If we use NLM
in the last two iterations, the noise in the empty regions is
greatly reduced without significantly distorting the features
of the virus particles gained through the reconstruction
process. After the 55 iterations, a last execution of the data
term operator is performed to ensure that the reconstructed
volume fits the original projection data. The 3D visualiza-
tions at different stages show that the noise is gradually
removed, and the final result allows visualization of the
virus particles. Reconstructions with up to 3×100 iterations
are available at the supplementary material.

4.9 Comparison with another model-based reconstruc-
tion method

We compare our results against those obtained with
MBIR [37] on dataset 1. The reconstruction parameters for
MBIR were: diffuseness 0.2, data offset 32768, smoothness
0.08, sigma X 1.52677 × 10−5, 600 outer sub-iterations, 100
inner sub-iterations. The reconstruction time was 4 hours
and 30 minutes (roughly 9 times slower than our method)
using a processor Intel Xeon E5-2687W v4 (2×3 GHz pro-
cessors). The results are very alike (Figure 9), which is

expected given the similarity between the two techniques.
Additional results in orthogonal slices are included in the
supplementary material.

4.10 Comparison with a pre-reconstruction denoising
method

We processed dataset 1 using Topaz Denoise [16], devel-
oped for denoising cryo-ET tilt-series. The denoised tilt-
series was reconstructed with 20 iterations of SART without
regularization since the tilt-series was denoised and using
additional regularization (e.g. LADMM with TV) produced
over-regularized (blurry) reconstructions. We compare the
result with the one from our framework using LADMM
2×80 iterations with TV, NLM instead of TV in the last
2 iterations plus a final data term iteration (Figure 10).
Regardless of the pre-filtering applied to the tilt-series, the
result using Topaz Denoise still contains noise in some
sections of the reconstruction, and some details in the virus
particles (e.g. the particle in the top-left corner) are blurred.
Our result presents homogeneous denoising and sharper
details.

4.11 Qualitative Comparison with Other Reconstruc-
tion and Denoising Methods

4.11.1 Influenza Tilt-Series
We created reconstructions from three tilt-series including
the influenza virus particles (dataset 3) using IMOD, IsoNet,
and our framework. First, we used IMOD’s SIRT algorithm
to create reconstructions with 10 and 20 iterations. We
selected the result after 10 iterations since it was cleaner
and presented better contrast. This is in accordance with
what we found when running more than a hundred iter-
ations with only SART in our ablation studies. We used
IMOD’s tomograms (bin-4 and bin-8) for training IsoNet (3
tomograms were used for training) for 20 iterations with
the recommended configuration [19]. Finally, we created
reconstructions with our framework, using LADMM for
2×80 iterations with and without NLM in the final two
iterations. The results are displayed in Figure 11. IMOD’s
SIRT allows to reconstruct features in the virus particles,
but there is a strong presence of noise in the reconstruction,
which would only worsen with more iterations. IsoNet bin-
4 results present slightly better contrast than IMOD’s, but
the noise level is very similar. IsoNet bin-8 achieves better
contrast than bin-4 and a moderate level of denoising, but
at the expense of image resolution. Our method manages to
reconstruct the features of the virus particles and achieves
excellent denoising results thanks to the iterative joint re-
construction and denoising nature of our technique.

4.11.2 HIV-1 (EMPIAR-10643)
We created reconstructions from tilt-series including ‘HIV-
1 GagdeltaMASP1T8I assemblies’ (dataset 4) available at
the Electron Microscopy Public Image Archive (EMPIAR-
10643) [71], [72]. This dataset presents repetitive structures
that are expected to work well for Non-Local Means but
also any other denoising method based on self-similarity,
including classical subtomogram averaging and IsoNet. We
created the following reconstructions (volume depth = 380
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Fig. 12. 2D slices and 3D visualizations of reconstructions from HIV-1 tilt-series (dataset 4, EMPIAR-10643) using different methods. IMOD
reconstructed the virus particles, but the 3D visualization is noisy. IsoNet reduces the noise from IMOD’s reconstruction and allows for 3D
visualization (at half the spatial resolution). Our method achieves cleaner results that produce cleaner 3D visualizations.

Fig. 13. Line for intensity profile comparison on dataset 4

for bin-3, 150 for bin-8): IMOD’s SIRT 10 iterations, IsoNet
bin-3 (pixel size 3.537 Å) and bin-8 (pixel size 9.432 Å),
and ours using TV+NLM (NLM in the last 2 iterations).
Additionally, the deconvolution step in IsoNet’s framework
was used for all the methods. 2D vertical slices and 3D
visualizations of the results are depicted in Figure 12. IsoNet
bin-3 achieves results very similar to IMOD’s reconstruction
(see supplementary material for IMOD vs IsoNet bin-3 vs
IsoNet bin-8). IsoNet bin-8 achieves good denoising results,
but the final result presents lower resolution than the other
methods (1366×1366×380 vs 512×512×150). Our technique
achieves cleaner and sharper reconstructed features. To
compare the sharpness and contrast of the results, we used
a method suggested by a field expert. The idea is to plot
the intensities along a line to create an intensity profile, and
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Fig. 14. Plot of the intensity profile along the line. The minimums
(corresponding to spikes) are more pronounced in the profile from our
reconstruction (blue).

we chose this dataset since it presents repetitive ‘spikes’ in
the outer part of the virus particles, which is perfect for
this method. The volume intensities were normalized from
0 to 255. We perform this analysis for IMOD’s, IsoNet’s bin-
3, and our results on a line across the lower spikes of the
leftmost particle in Figure 12. A close-up image included
the line is shown in Figure 13, and the respective intensity
profiles correspond to Figure 14. In the intensity profiles, the
maximum peaks correspond to empty space between the
spikes, and the minimum values correspond to the spikes.
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Fig. 15. Comparison between Ours (SART+TV+NLM, bin-4) and IsoNet
(bin-8) on dataset 2. The virus inner structure is clearer after IsoNet
processing. However, the spike’s stem used to connect the membranes
should have some density, and the spike‘s head should not have the
encircled density.

For the majority of the spikes, our method presents smaller
minimum values (darker spikes). In IMOD’s and IsoNet’s
results there are several saturated blobs in the empty regions
resulting from the deconvolution step due to the higher
presence of noise, producing higher maximum values in the
profile. Our method presents a more homogeneous back-
ground with significantly less blobs thanks to the achieved
level of denoising. There is a clear visual difference in the
reconstructed quality of the spikes between our method
and the others, which can be appreciated in the regularity
of Ours’ intensity profile and at the spike at around 95-th
pixel (the sixth minimum in our profile), since the spike is
counted as two in the other methods.

4.12 Additional Comparison with IsoNet

We performed additional comparisons between our method
(bin-4) and IsoNet (bin-8, half the spatial resolution) using
dataset 2. The results are illustrated in Figure 15. IsoNet
achieves better denoising results, which allows for a more
clear view on the internal structure of the virus particles.
However, the spike’s stem used to connect the membranes
should have some density, and the spike‘s head should
not have the encircled density. Model based regularized
approaches can provide more reliable results than learning-
based reconstruction or refining methods.

4.13 Example of error visualization

Assuming that the reconstruction process was successful,
the error should be uniformly distributed and not correlated
with the reconstructed volume. We created two reconstruc-
tions of a tilt-series part of the EMPIAR-10643 dataset, one
with good alignment, and one with a misaligned version
of the same tilt-series. In Figure 16, we compare slices of
the error volumes. The left image corresponds to the error
volume of the reconstruction created with the aligned tilt-
series, and the right image to the error volume of the recon-
struction created with the misaligned tilt-series. The images

Fig. 16. Slice of the error volume, dataset 4. Left: Reconstructions from
aligned tilt-series. Right: Reconstructions from misaligned tilt-series.

were processed as described in Section 3.6 to enhance the
structures in the error. The error slice from the misaligned
tilt-series contains visible structure in comparison with the
aligned version, and there are white diagonal smudges
corresponding to fiducials (both encircled in yellow).

We can observe the positive effect of regularization
in Figure 17, which includes slices of the error volumes
from a non-regularized reconstruction (SART only, left) and
a regularized reconstruction (SART+TV+NLM, right). The
error corresponding to the non-regularized reconstruction
includes structures that clearly resembles the virus particles
(encircled in yellow, see Figure 7 for reference). In contrast,
the error from the regularized reconstruction presents prac-
tically no structure correlated to the volume, which indi-
cates that the reconstructed virion’s features obtained with
regularization match the features available in the original
projection data.

5 CONCLUSION

We have presented a new GPU accelerated framework
for tomographic reconstruction of tilt-series from cryogenic
electron microscopy. The framework is based on a flexible
and robust optimization framework that integrates the re-
construction and denoising processes and achieves sharp
denoised reconstructions, while preserving the relationship
between final reconstruction and original tilt-series. The
framework transforms noisy tilt-series into denoised vi-
sualizations in a short time and using a single piece of

Fig. 17. Slice of the error volume, dataset 1. Left: SART+TV+NLM. Right:
SART only. The error from the reconstruction without regularization
presents structures correlated to the virus particles.
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software. We demonstrate improvements in denoising and
reconstruction quality compared to state-of-the-art methods.
The framework’s source code will become available upon
publication. Given the flexibility of the proximal framework,
a possible next step could be the use of self-supervised deep-
learning-based denoising approaches as additional regular-
izers in the framework.
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