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Abstract: Computing wave propagation is of the utmost importance in computational optics,
especially three-dimensional optical imaging and computer-generated hologram. The angular
spectrum method, based on fast Fourier transforms, is one of the efficient approaches; however, it
induces sampling issues. We report a Hybrid Taylor Rayleigh-Sommerfeld diffraction (HTRSD)
that achieves more accurate and faster wave propagation than the widely used angular spectrum
method.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

As Joseph W. Goodman says, “The phenomenon known as diffraction plays a role of utmost
importance in the branches of physics and engineering that deal with wave propagation [1].”
The wave equation describes the propagation of light through most media, and leads us to
regard optical imaging as a specific mapping of object light into image light distributions.
Advanced computational techniques along with the developed digital devices have promoted the
contemporary computational imaging [2], which demands precise and high-speed numerical
wave propagation that can work over a wide range of, distances, especially in situations that
require numerous wave propagations, or where the target fields consist of a large amount of data,
such as three-dimensional (3D) imaging, which requires volume diffraction [3,4] or multiple-slice
beam propagation methods [5–8], computer-generated holograms (CGH) [9–11] for 3D [12]
AR/VR [13] display and imaging with inverse problem solving [4,7,14].

Fast-Fourier-transform (FFT) convolution approach is widely used to implement the diffraction
formulas for its speed. However, it induces sampling issues that affect the numerical accuracy of
computing diffraction [15,16]. A lot of efforts have been made to achieve accurate propagation
in a wide range of distances [17], such as intermediate plane techniques [18], band-limit angular
spectrum method (ASM) to avoid aliasing [19], padding to expand the band-width [17,20,21],
adaptive-sampling to utilize the space-bandwidth product while reducing the computational
complexity [22], non-uniform FFT to achieve fast calculating [22,23]. Most methods focus on
sampling issues [24–26].

This paper improves the Rayleigh-Sommerfeld diffraction computation without concentrating
on the sampling issue. Instead, by Taylor expanding the exponential term in the diffraction
convolution kernel, the angular spectrum diffraction formula can be approximated such that a
similar numerical accuracy is attainable with fewer bits formats, e.g., single-precision floating-
point data type. This cuts off the required computational memory by half compared to the usual
double-precision floating-point data types, and significantly reducing run-time consequentially.

2. Theory

We consider free-space propagation of a fully coherent monochromatic scalar wave field, in the
spatial domain. Let λ be the wavelength of the scalar field, and k = 2π/λ be the wavenumber. In
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a 3D Cartesian coordinate system (x, y, z), we consider wave propagation along the z-axis, and
the transverse 2D plane r⊥ = (x, y) is of our interest. | · | denotes vector lengths in ℓ2. We are
interested in how an unbounded initial field u(r⊥, 0) evolves into a new field u(r⊥, z) [1], after a
propagation distance of z:

u(r⊥, z) = u(r⊥, 0) ⊗ h(r⊥, z), (1)

where ⊗ denotes convolution, and h(r⊥, z) is the point-spread-function (PSF) for distance z. The
convolution theorem implies computing Eq. (1) using Fourier transforms [15]:

u(r⊥, z) = F−1 (F (r⊥, z0) × F (h (r⊥, z))) FFT-DI,

u(r⊥, z) = F−1 (F (r⊥, z0) × H (ρ⊥, z)) ASM,
(2)

where F /F−1 are forward/inverse Fourier transforms, ρ⊥ =
(︁
fx, fy

)︁
is the Fourier dual of r⊥, and

H (ρ⊥, z) is the coherent transfer function (CTF). The former equation is named as FFT-based
direct integration (FFT-DI) and the latter is ASM. In this paper, we consider the widely used
free-space Rayleigh-Sommerfeld diffraction (RSD), since in contrast to Fresnel and Fraunhofer
diffraction, the RSD is valid in non-paraxial conditions. According to the Rayleigh-Sommerfeld
diffraction formula [1,27], the point spread function h(r⊥, z) writes as

h(r⊥, z) = 1
2π

z
r
(1 − jkr)

r2 exp(jkr), (3)

where r = |r| and r = (x, y, z). In Fourier space, the transfer function [24] based on the Weyl
expansion is [28]:

H(ρ⊥, z) =
{︄

exp(jkz
√︁

1 − λ2 |ρ⊥ |2) λ |ρ⊥ |<1,
exp(−kz

√︁
λ2 |ρ⊥ |2 − 1) λ |ρ⊥ | ≥ 1.

(4)

The performance of the two approaches is different due to the sampling of the FFT, while the
band-limited ASM [19] is widely used for its relative accuracy, which will be used as a benchmark
baseline in this paper.

Except for the sampling issues in the numerical diffraction implementation, we found that
accuracy depends on floating-point precision. Because the visible light’s wavelength is hundreds
of nano-meter and the sensor pixel pitch is at the micro-meter scale, the terms

√︁
1 − λ2 |ρ⊥ |2 in

Eq. (4) and exp(jkr) in Eq. (3) cannot be accurately represented by a single-precision floating point
number, i.e., the conventional numerical diffraction requires double-precision representations.
This limitation is demonstrated in Fig. 1. This limitation presents an obstacle in particular
for implementations on graphics processing units (GPUs), which have both limited memory
resources, and are significantly faster at processing single vs. double precision numbers. Single
precision arithmetic is commonly used in deep learning frameworks [29] and physics-based
neural network training [3], but naïvely using single precision for diffraction simulations leads to
inaccurate results due to numerical errors in the phase terms.

In the following, we show the proposed Hybrid Taylor Rayleigh-Sommerfeld diffraction
(HTRSD) method. With a proper Taylor expansion and hybrid FFT-DI and ASM, we can achieve
precise numerical wave propagation with a single-precision float number. We also show the
time and memory efficiency. For convenience, we name ASM-single and ASM-double as the
conventional band-limited ASM [19] method work in single- and double-precision float format,
respectively.

For the PSF in Eq. (3), direct sampling may lead to severe numerical rounding errors caused
by exp(jkr), in a general setting when k ≫ 1/z, we can approximate r using Taylor series, that is
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(b) Computed CTFs.

Fig. 1. (a) Computed PSFs and (b) CTFs from Eq. (3) and Eq. (4) using different
computational approaches. The Naïve way computes the kernels by brute force computing
the square root, resulting in large numerical errors. In contrast, Taylor expanding the square
root leads to smaller numerical errors, and further converging to the ground truth with more
Taylor terms, here demonstrated by the first two terms.
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valid when |r⊥ |<z:

r = |r| = z
√︁

1 + (|r⊥ |/z)2 = z +
∞∑︂

n=1

(︃ 1
2
n

)︃ |r⊥ |2n

z2n−1 , (5)

Equation (3) thus can be rewritten as:

he(r⊥, z) = z(1 − jkr)
2πr3 exp(jkz)

∞∏︂
n=1

exp
[︃
jk

(︃ 1
2
n

)︃ |r⊥ |2n

z2n−1

]︃
. (6)

Assuming |r⊥ | ≪ z, Eq. (6) reduces to the Fresnel diffraction formula. Similarly, for the CTF in
Eq. (4),

√︁
1 − λ2 |ρ⊥ |2 causes errors in the single-precision float number case. This term can be

approximated by the Taylor series, assuming λ |ρ⊥ | ≪ 1, which is a plausible setting in most
situations: √︂

1 − λ2 |ρ⊥ |2 = 1 +
∞∏︂

n=1

[︃(︃ 1
2
n

)︃
(−λ |ρ⊥ |)n

]︃
. (7)

The CTF for λ |ρ⊥ |<1 is thus re-written as:

He(ρ⊥, z) = exp (jkz) exp

(︄
jkz

∞∏︂
n=1

[︃(︃ 1
2
n

)︃
(−λ |ρ⊥ |)n

]︃)︄
. (8)

Figure 1 shows the improvements when using the proposed Taylor approximations for computing
the PSF and CTF.

As mentioned in previous paragraph, the double-precision float number requirement leads to
significant time and memory consumption, thus limiting the numerical diffraction’s applications.
Here we show that with the Taylor expansion, we can eliminate the double-precision float number
requirement in the Rayleigh-Sommerfeld diffraction. Figure 1 demonstrates the limitations when
computing the PSF and CTF naïvely and with the Taylor expansion in single-precision float
number. Figure 1(a) shows the real parts of exp(j(kr − kz)) with respect to |r⊥ |/z, and Fig. 1(b)
shows the real parts of exp(jkz(

√︂
1 − λ2 |ρ⊥ |2 − 1)) with respect to λ |ρ⊥ |. The difference (red lines)

between the naïve and the Taylor expansion show that numerical precision could decrease when
using single floating points for computing the PSF and CTF via Eq. (3) and Eq. (4). A naïve
approach suffers from severe numerical rounding errors (first rows). In contrast, using Taylor
series and by approximating the phase terms, converges to the ground truths computed using
double precision accuracy (second rows). Approximation accuracy further increases when adding
more terms (third rows). As for the IEEE floating point standard, for single precision the smallest
spacing is 1.1921 × 10−7 and for double precision it is up to 2.2204 × 10−16 [30]. The accuracy
could not beyond this.

Since the ASM is not suitable for long distance propagation [26,31], combine the ASM and
FFT-DI with the conditions of the Taylor expansion, the finial diffraction formula is:

u(r⊥, z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
F−1 (F (u (r⊥, z0)) × H (ρ⊥, z)) ∆x ≤ λ,
F−1 (F (u (r⊥, z0)) × He (ρ⊥, z)) z ≤ zc,∆x ≥ λ,
F−1 (F (u (r⊥, z0)) × F (h (r⊥, z))) zc ≤ z ≤ |r⊥ |,
F−1 (F (u (r⊥, z0)) × F (he (r⊥, z))) z> |r⊥ |,

(9)

where zc is the critical diffraction distance for transfer function and impulse response methods,
defined as zc = N × ∆x2/λ [26], N is the sampling number of the complex field in the object
plane, ∆x is the sampling pixel pitch. It is worth noting that compared to ASM that requires two
FFTs, three FFTs do not increase significant additional time cost if F (he (r⊥, z)) or F (h (r⊥, z))
are pre-calculated in advance.
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3. Numerical verification

Following the band-limited ASM, in the implementation, we pad the original field with zeros
for two times and crop the field to the original size after propagation, as shown in Fig. 2. We
implemented the code with PyTorch 1.10 [29]. For generalization, we set the input field as a
volume of size Nx × Ny × Nz. The CTF or PSF are the same size as the input field. This can
be easily applied to both 2D and 3D wave propagation by setting Nz = 1 or Nz>1. We set the
Taylor expansion order as n = 10. The following numerical experiments were conducted on a
workstation with two Intel Xeon E5-2690 2.60GHz CPUs.
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Fig. 2. Schematic for Computing optical wave free-space propagation. To avoid boundary
artifacts, the object plane is padded, and the detection plane is cropped after propagation.

The proposed method is verified on circular and square apertures with analytical expressions.
For a circular aperture of radius a, at different propagation distance z, under normal uniform
plane-wave illumination [1], the on-axis scalar fields on the optical axis can be expressed exactly
[32,33]:

u(0, z) = z ×
(︄
exp (jkz)

z
− exp(jk

√
z2 + a2)√

z2 + a2

)︄
. (10)

Here we set a = 10λ. Figure 3 shows the magnitude and phase profile with respect to the
diffraction distance z. The plot is over a range of 10−1 ≤ z/λ ≤ 104, which corresponds to a
Fresnel Number ranges from 0.01 to 1000, make sure that the diffraction calculation range covers
the full wave equation, Fresnel diffraction (near field), and Fraunhofer diffraction (far field).
From the pink and olive zoom-in parts, we can observe that both ASM-single and ASM-double
deviate from the analytical result in the far-field region. In contrast, the proposed method is
closer to the analytical one. This outperforms the conventional one.

The on-axis field can not reflect the performance of the whole field propagation since we
usually detect the 2D fields perpendicular to the optical axis in practice. Here we perform
the comparison of circular and rectangle apertures. In the following, we set the pixel size of
the original field as Nx = Ny = 255, the width and length are Lx = Ly = 0.5 m, a = 0.125,
and λ = 500 nm (same parameters as in Chapter 5 of Ref. [31]). We measured the diffracted
fields at z = {1000, 2000, 4000, 20000}m respectively, which correspond to Fresnel number
Nf =

a2

λz = {31.25, 15.625, 7.813, 1.562}. This setting ensures that the measured diffraction
images are within the Fresnel region. Figure 4 shows the comparison of circular aperture
diffraction. From both the 2D images in Fig. 4(a) and the plots of the crossed center line in
Fig. 4(b), we can observe that ASM-single method doesn’t work at all, and on the contrary,
ASM-double and the HTRSD-single work well. The diffraction images of a rectangle aperture in
Fig. 5 shows the similar results as in the circular aperture diffraction case. In this case, we also
provide the plot of the RS calculation with numerical integral (RSI) method in Fig. 5(b). The
proposed HTRSD method shows a comparable results to both the RSI and ASM with double
precision. From both the tests on circular and rectangle apertures, we can say that the proposed
HTRSD-single can achieve comparable results as the conventional ASM.
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Fig. 3. Magnitude and phase profile vs. propagation distance.
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Fig. 4. Intensity (a) and profile (b) comparison on a circular aperture.

The previous paragraphs show that the proposed HTRSD can achieve even better accuracy in
a single-precision float number format than the conventional band-limited ASM method with
a double-precision float number. Here we show the time and memory cost comparison. To
compare the time cost, we propagate a 2D complex field of pixel size 1024 × 1024 for various
times with the ASM in double float precision and the proposed method in single float precision.
Figure 6(a) shows the time cost with respect to the propagation numbers. It shows that the time
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Fig. 5. Intensity (a) and (b) profile comparison on a rectangle aperture.

cost is linearly proportional to the propagation number in both cases, while the conventional
method costs 1.5 times over the proposed method. This is not surprising since both GPU and
CPU can compute higher number operations if numbers have less precision. Notably, calculation
of the Fourier transform of the PSF in HTRSD-single was included in the comparison. Even so,
the speed of HTRSD-single is still much faster than the conventional ASM in double precision.
For the memory costs, the target object is a volume with the same lateral size as in the speed
test but with varying depth numbers. Similar to the time cost, the memory cost is also linearly
proportional to the target volume size, while the conventional method costs double memory to
the proposed method. This is because the double float is a 64-bit point number, and the single
float is 32-bit, so a single float number uses half of the memory as the same size double float

(a) (b)

Fig. 6. Time (a) and memory (b) costs of the conventional ASM and proposed HTRSD.
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number uses. It should be noted that the HTRSD might perform more accurately if double float
precision is used, however this may come at the expense of speed and memory usage.

4. Conclusion

We present a numerical diffraction technique, HTRSD, that can achieve more accurate Rayleigh-
Sommerfeld diffraction at a much higher speed but consume dramatically less computational
resources as well as memory. This could promote the development of contemporary computational
optics, especially computational imaging that includes optimization-based inverse imaging and
extensive volume diffraction calculation in both optical imaging and displays. This work could
also help computational imaging techniques that employ GPUs due to the power of GPU
computing on single-precision floating points [34].
Funding. King Abdullah University of Science and Technology.
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